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TRESS Night and Day Cycles

Night – Power Out Day – Power In
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TRESS Overview

Concept based on efficient energy storage in hydrogen peroxide and magnesium 
hydride and in leveraging reaction heat release to generate hydrogen, oxygen, 

and steam for solid oxide fuel cell/steam microturbine power units
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Reactant Volume Comparison
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System Configuration – 5 kW, 2,000 kWh

Pod configuration:

• Sealed from lunar environment in dome 
(radiation shield)

• Readily deployable from lander

• Electrical interfaces:

– Power in from PV array

– Power out

• Total system mass ≈ 2,000 kg

• Materials consumption:

– MgH2 powder: ~500 gram/hour

– H2O2 (75% in water): ~1,800 gram/hour

• Fully regenerative closed system
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TRESS Processes Benefits Summary

• High temperature chemical processes
– High efficiency thermal energy conversion
– High grade heat used to generate additional power

• High volumetric and gravimetric energy density 
– High efficiency storage of H2 and O2

– Scaling-up storage (duration) increases overall system energy density

• Low material flow rates
– Simplifies material supply subsystem components
– Compact energy generation modules

• No maintenance required for materials stored for extended time periods
– Opportunity to generate and store materials in advance for later use
– Materials are safe and easily transportable

• Efficient material recycling technologies
– System based on tested processes – need to develop lunar-specific designs
– Experimental data are available to support system performance estimates 

• Recycling process synergy with ISRU
– Hydrogen peroxide may be used as a compact /storable water/oxygen source
– MgO availability on the Moon
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TRESS Unit Design Essentials    

• Compact size

– The system can be delivered in one module to the Moon ready for operations after 
integration with the solar array

– Most components (e.g. turbine/SOFC/H2 and O2 reactors) are small 

– The unit is transportable to other lunar locations
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Mobile TRESS – 5 kW, 40 kWh (8-hour scenario) 

• System is ~18-in. Φ x 32-in. H + heat rejection panels

• Mass ≈ 80 kg (0.5 kWh/kg)

• Encapsulated fueling options
– Provide opportunity to fuel mobile/remote units

– May be readily transported via hoppers to any lunar location

– Standardized recycling interface enables centralized recycling (recharging) pod
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TRESS Mobile (Rover/Remote Outposts) Applications

• Mobile units use encapsulated 
MgH2 powder and peroxide 
cartridges that can be easily 
exchanged from a central depot 
or remote supply caches

• No need for on-board recharging

• Modular power cartridges may 
be distributed to any place on the 
lunar surface where common 
power generator interfaces are 
provided

• The cartridges are safe for long-
term storage and may be 
delivered to the areas of interest 
in advance of particular missions
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Applications/Variations of TRESS Technology

• MgH2 + O2 system (instead of H2O2)

– Eliminates most complex synthesis process 
(and contaminants)

• Interplanetary Lunar Network (ILN)

– <100 W systems for remote applications

• Emergency oxygen, water, or heat delivery

• Rocket propulsion using ISRU + TRESS 
derived propellants

– MgH2 + H2O2 rocket has Isp > 300 sec

• Terrestrial vehicle applications – compact H2
for fuel cells and energy generators

• Underwater applications (or other sealed 
environments)
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TRESS Relevance to Lunar Exploration Objectives 
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TRESS Relevance to Lunar Exploration Objectives 
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TRESS Relevance to Lunar Exploration Objectives 
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TRESS Program Plan Concept

• ATK and ACEnT Laboratories propose a phased program for the development 
of a TRESS system with a TRL of 6 by 2015 to 2018. The program is divided 
into 3 phases as follows:

– Phase I: Electrical Energy Generating Module Demo and TRESS System 
Analysis

– Phase II: TRESS Small Scale Prototype Demo Fabrication and Testing

– Phase III: Full-scale TRESS Prototype Development, Design, and Testing

• Detailed schedules have been developed for each of the program phases 
using Microsoft Project software

• All work is expected to be conducted in close cooperation with NASA
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TRESS System Design andTRESS System Design and
Concept of OperationConcept of Operation
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TRESS Pod with Heat Rejection Arrays

5 kW, 2,000 kWh System Depicted

5 ft 9 in. person 
for scale
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TRESS System Isometric (Peroxide Tank Removed)
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TRESS System Isometric (Peroxide Tank Removed)
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Only TRESS Power Generation Components Required 
for Mobile Applications
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Regeneration Station for Mobile System

Mobile Cartridges are Inserted into Regeneration Pod 
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Subsystems OverviewsSubsystems Overviews
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Aqueous Peroxide Storage

• Toroid-cylinder with bladder

• H2O2 + H20 on inside, H2O collection on 
outside

• Largest volume component

• Key issue = compatibility with HBr and HCl 
(from synthesis reactor) and thermal 
management
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Magnesium Hydride Storage

• Dry powder hopper

• Ultrasonic micro-dispenser

• Vibration-assisted flow

• Key issues – low gravity and dispense to 
pressurized reactor
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Peroxide Decomposition System

• Passive transition metal catalyst bed similar to 
peroxide monopropellant rockets

• Exothermic decomposition reaction 

• At < 67% concentrations, temperature is limited 
to saturation at set pressure

• Product (<67%) is O2 and high quality steam

• Gravity-based liquid/water separator
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Magnesium Hydride Reactor

• Based on powder/flame 
spray gun technology

• Key is mixing efficiency 
and residence time to 
complete reaction
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Solid Oxide Fuel Cell (SOFC)

• Accumetrics cylindrical configuration is baseline



A premier aerospace and defense company

30

• Microturbine has highest power to weight

• We need Pin/Pout = 270 to maximize power output

• 40% efficiency today, but we can sacrifice weight for more 
efficiency for TRESS

• M-DOT 500 W product is selected departure point 

Nighttime Waste Heat Recovery - Microturbine
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Other Power Generation Options Considered

• NASA Stirling engines for 
radioisotope systems

• 38% efficiency for 850°C to 90°C 
demonstrated

• Scroll expander offers 70% 
efficiency, however pressure 
ratio is limited

• Multiple units in series 
possible
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High Pressure Water Electrolyzer

Prototype

386Specific power (W/kg)
(5100 Watts/13.2 kg)

Pressure (kPa gage) 8245 (1200 psig)
Efficiency at design point 83.20%

(at Higher Heat Value basis) (@700 mA/cm2 )

Efficiency at 25% Imax 

(HHV basis)

86.40%

Efficiency at 50% Imax 

(HHV basis)

87.60%

Efficiency at 75% mA/cm2 

(HHV basis)

86.00%

• Giner Electrochemical Systems 1,200 psi high pressure 
electrolyzer is baseline point of departure

– NASA GRC and DARPA funding

– Eliminates need for O2 and H2 compressors for H2O2
synthesis system
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Aqueous Hydrogen Peroxide Synthesis

• Headwaters Technology Innovations direct synthesis process is baseline
– Industrial process uses methanol as substrate, TRESS uses supercritical 

CO2



A premier aerospace and defense company

34

MgH2 Regeneration System

• Boston University solid oxide membrane (SOM) process is 
baseline for MgO decomposition
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Possible Organic Rankine Cycle (ORC) on Reactor

• ORC bottoming cycle may be used to extract additional energy from H2O2
synthesis reactor cooling loop

• Use of second fluid and temperature difference from reactor (1,150°C) to shaded 
lunar heat sink

• Low efficiency expected due to indirect heat exchange (~20%), but small system 
does not add significant weight

Waste Heat 
Source
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Heat Rejection Scheme

• NASA CR – 2006-2143881 describes a potential system for heat rejection of 
temperatures in the range ~ 450K (177°C)  

1NASA CR – 2006-214388, Heat Rejection Concepts for Lunar Fission Surface Power Applications, J. Siamidis
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• A~6 meter diameter single-wing UltraFlex unit of 14 to 18 kW will be able to 
provide the necessary power for the daytime regeneration cycle of TRESS  

ATK Deployable Solar Arrays
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Risk Items Effect(s) Proposed R&D Activities

Contamination of H2O2 with 
trace quantities of HBr and HCl

Corrosion of catalyst and 
reduced life of subsystem.

Experimental verification of material life with trace 
quantities of the additives

Ineffective gas phase MgH2
synthesis

Incorrect chemistry Not typically done with gas phase Mg – bench-scale 
tests to verify

Inefficient mixing of powder and 
steam

Incorrect chemistry results in 
low H2 yield and undesired 
products

Extensive design and test of system.  Leverage 
experience from flame spray industry

Accurate control of powder 
dispense in reduced gravity and 
low temperature

Non-uniform dispensing 
results in incorrect chemistry 
and thermal balance for 
system

Leverage experience from pharmaceutical industry.  
Carefully calibrate system

Backflow of steam due to 
powder dispense to pressurized 
reactor

Reaction in powder hopper Backpressure hopper to above steam pressure (not 
desired).  Supersonic injection (ejector) similar to 
HVOF flame spray.

HBr + HCl contaminants in 
MgH2 reactor

Potential creation of 
unwanted compounds (e.g. 
MgCl2 and MgBr2)

Assess with bench-scale tests 

SOM Containment  Vessel 
Corrosion

maintenance, life Investigate alternatives- material optimization, 
coatings, alloys..; surface temp.

SOM YSZ Membrane Durability Life,  efficiency, 
maintenance, durability

Examine post-exposure mechanical and physical 
characteristics

Top Subsystem Risks
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Risk Items Effect(s) Importance/ 
Likely-hood Technical Risk Proposed R&D Activities

Inaccuracy in 
flow control, 
particularly 
during system 
transients

Reduced 
efficiency, 
offset thermal 
balance, 
unwanted 
products can 
accumulate 
contaminants 

High High Comprehensive closed-
loop control architecture 
development.  Extensive 
testing and sensitivity 
examination

Thermal balance 
variations, 
particularly 
during transients

System 
efficiency, 
weight, life 

High Med Thermal controls 
development and testing –
sensitivity assessment.  
Environmental tests

Accumulation of 
contaminants

Efficiency, life 
reduction

High High Subsystem testing to 
insure purity, system 
testing to assess impacts

Top System Level Risks
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TRL Assessment

System TRL Today
(on Earth)

TRL Today (lunar) Risk to TRL 6 
by 2015

H2O2 Storage 9 2
L

MgH2 Storage 9 2
L

H2O2 Decomposition 
Reactor

9 3
L

MgH2 + H2O Reactor 4 2
L

SOFC and Turbine 5 3
M

Water Electrolysis 9 6
L

MgH2 Synthesis 3 1 - 2
M/H

H2O2 Synthesis 9 1 - 2
M/H

System Integration 
and Operation H
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Figure of Merit Sensitivity Analysis

• Variables used in parametric analysis: 

– Percent hydrogen peroxide concentration in water (50% and 75%)

– System power level (2, 3.5, and 5 kW)

– System energy storage (100 kWh to 2,000 kwh) or up to 400 hours

– Regeneration time as a function of power generation time (1X and 2X)

– SOFC efficiency (45% to 60%)

– Nighttime waste heat efficiency

• Key figures of merit:

– System flow rates 

– Overall TRESS system mass

– Energy-in/energy-out “round trip” efficiency

– Power-in requirements

– System mass distribution by major subsystem
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Overall System Energy Efficiency with ORC
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System Mass Sensitivity (5 kW, 75% Peroxide)
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System Mass Sensitivity (2 kW, 75% Peroxide)
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Daytime Waste Heat (75% Peroxide)
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Daytime Waste Heat (55% Peroxide)
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Key Results Summary

• System is characterized by high energy density 

– ~1.1 kWh.kg for complete TRESS

– ~1.4 kWh/kg for power generation only

• As expected, high concentrations of peroxide are favorable

– Less water to store and regenerate in peroxide mixture

• Reactant storage is key mass and volume driver

– Efficiency is key for power gen components – mass is secondary (or lower)
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100 W TRESS-derived Power Sources (ILN)

Operational Time 336 hours
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ILN TRESS Variants – Mass Distributions
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TRESS Summary

• Our Thermochemical Regenerative Energy Storage System (TRESS) is a 
promising candidate to meet NASA’s requirements in a highly compact, 
efficient package

• The system performance and form factor is superior to batteries and H2 –O2
regenerative fuel cell based systems

• TRESS is highly compatible with future in-situ resource utilization (ISRU) for 
added long-term benefits

• ATK has committed significant funding to the underlying CHOSS system 
development 
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Thank Thank 
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